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Introduction  
 
In modules 2 and 3 we developed the basic ideas of linear pulse propagation in optical fibers as 
described by the slowly varying envelope Equation 2.24 or 2.26.  In this module we shall study 
how nonlinear optics enters into optical fiber propagation through nonlinear refractive-index and 
self-phase modulation (SPM), and we shall use numerical simulations to illustrate how SPM 
modifies the propagation.  In module 5 we shall study the combination of SPM and GVD in 
fibers and see that this gives rise to the concept of temporal optical solitons. 
 
The learning outcomes for this module include 
 

• The student will be conversant with the basic notions of nonlinear optics and how this 
gives rise to the nonlinear refractive-index due to the Kerr effect. 

• The student will be able to evaluate the nonlinear phase-shift due to self-phase 
modulation for given fiber parameters and input pulse condition. 

• The student will be conversant with the equations describing pulse propagation in a fiber 
including both linear and nonlinear effects. 

• The student will be able to simulate pulse propagation in a fiber and calculate the 
evolution of the pulse spectrum down the fiber. 

• The student will be conversant with the physics underlying SPM-induced spectral 
broadening and be able to estimate the magnitude of the broadening given the fiber and 
pulse parameters. 

mailto:ewan.wright@optics.arizona.edu�


 
 

2 The authors would like to acknowledge support from the National Science Foundation through CIAN NSF 
ERC under grant #EEC-0812072 

 

 
4.1 Nonlinear refractive-index and self-phase modulation (SPM) 
 
To introduce the idea of nonlinear-refractive index we consider a continuous-wave (CW) or 
monochromatic plane-wave field propagating along the z-axis in a bulk dielectric medium as 
opposed to a fiber. This will simplify the discussion by avoiding the complications of the fiber 
geometry and we shall point out where the specifics of the fiber come into play as we go along.  
To proceed we recall from module 2 that the refractive-index 0n  is given by 2 (1)

0 1n χ= + , 
with (1)χ  the linear susceptibility that relates the field to the polarization via the relation 

(1)
0 EP χ=  . (This form of the polarization is the same as Equation. 2.3 but with no spatial 

variation of the susceptibility since we are considering a bulk medium and not a fiber.)  It turns 
out that this expression is only the leading order term in an expansion of the polarization P  in 
terms of the field strength E  (see Sec. 1.1 of Ref. [1] for a discussion of this expansion) 
 
 (1) (2) 2 (3) 3

0 0 0P E E Eχ χ χ= + + +…      
(Equation 4.1) 

 
Generally this expression involves vector fields and tensor susceptibilities but this scalar form of 
the relation between the field and polarization is adequate for our purposes if we restrict our 
selves to the case of linearly polarized fields.  In the regime of linear or first-order optics we 
need only consider the first term in this expansion involving the linear or first-order 
susceptibility (1)χ . The regime of nonlinear optics arises when the terms in the polarization 
involving quadratic and higher powers of the electric field strength come into play.  The 
nonlinear regime occurs when the electric field strength starts to approach the atomic field 
strength 115 10atE ≈ ×  V/m that characterizes the binding of the valance electrons to the 
constituent atoms of the medium.  Thus nonlinear optics requires large field strengths but these 
are easily realized nowadays using lasers, especially with short pulse lasers.  We remark that 
although the nonlinear terms always remain much smaller the linear polarization, this does nor 
discount nonlinear effects from having a large physical effect as we shall see.  
 
In isotropic media such as fused silica it turns out that the second-order susceptibility vanishes 

(2) 0χ =  due to symmetry considerations.  (The second-order nonlinearity proportional to 2E  
gives rise to second-harmonic generation which can occur in fibers under special conditions but 
here we do not consider this.)  We shall hereafter consider the polarization 
 
 (1) (3) 3

0 0 ,P E Eχ χ= +     
(Equation 4.2) 

 
that involves the linear or first-order polarization and susceptibility (1)χ , and the third-order 
polarization and susceptibility (3)χ . To see the consequence of the third-order nonlinear term we 
write Equation. 4.2 in the form 
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 (1) (3) 2 2
0 0 0)( ( ) ,P E E E Eχ χ χ= + =        

(Equation 4.3) 
 
from which we see that the third-order nonlinearity manifests itself as a nonlinear susceptibility 

2 (1) (3) 2( )E Eχ χ χ= + .  Using the relation 2 1n χ= +  we find the associated nonlinear refractive-
index  
 
 2 2 2 (3) 2

0( ) .n E n Eχ= +   
(Equation 4.4) 

 
It is convenient to relate this to the intensity of the optical field 2

0 0I n cE=  . Then using the fact 
that 2 (3) 2

0 | |n Eχ>>  since the nonlinear term is always much less than the linear term, we find the 
expression for the intensity dependent refractive-index 
  
 0 2( ) ,n I n n I= +    

(Equation 4.5) 
 
where the nonlinear index coefficient is given by (3)

2 0 0/ (2 )n n cχ=  .   The refractive-index of 
the medium therefore has a component that varies linearly with the intensity of the propagating 
light field and this is called the nonlinear optical Kerr effect.  The nonlinear index coefficient 
will have units 2 /cm W  if the intensity is in units of 2/W cm , and a typical value for fused silica 
is 16 2

2 2.6 10   /n cm W−× .  If 2 0n >  we have a self-focusing nonlinearity, and 2 0n <  a self-
defocusing nonlinearity.  For all practical cases 0 2| |n n I>> , that is the nonlinear change in 
refractive-index will be small compared to the linear refractive-index, and this underlies the 
derivation of the nonlinear refractive-index expression in Equation. 4.5. 
   
We have now established the concept of nonlinear refractive-index as described by Equation. 
4.5, and optical fibers display a self-focusing nonlinearity with 16 2

2 2.6 10   /n cm W−× .  We next 
need to study the physical effects associated with the optical nonlinearity.  To proceed we recall 
that for a CW field of frequency 0ω  propagating along the z-axis in the medium the complex 
field varies spatially as (factor 0i te ω−  removed) 
 
 0 0( ) , / ,i zE z E e n cβ β ω= =    

(Equation 4.6) 
 
where n  is the refractive-index of the medium, β  is the mode propagation constant, and 0E  the 
peak field strength, the field intensity being 2

0 0 0| |I n c E=  .  If we substitute the nonlinear 
refractive-index in Equation. 4.5 into the plane-wave solution 4.6 we obtain 
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(Equation 4.7) 
 

where 0 0 0 /n cβ ω= .  Here we see that in addition to the linear spatial phase variation 0L zφ β=  
that appears in the carrier plane-wave factor 0i ze β  the propagating field also accumulates a 
nonlinear phase-shift 
 

 0
2( ) ,NL z n Iz

c
ωφ =    

(Equation 4.8) 
 
an effect known as self-phase modulation (SPM).  Thus, SPM causes the total phase shift 

( )L NLφ φ φ= +  suffered by the propagating field to depend on the intensity of the field, something 
that is not possible in linear optics.  We remark that since 0 2| |n n I>>  then it will be the case that 

| |L NLφ φ>> .  However, the magnitude of the nonlinear phase-shift only needs to approach a 
fraction of a 2π  for it to have an easily observable effect.  Although the nonlinear phase-shift  is 
at first sight a small effect compared to the linear phase-shift it is very relevant for two reasons: 
 

1. Confinement of light in optical fibers allows for high intensities and the nonlinear phase 
shift in Equation. 4.8 is proportional to the intensity. 

2. Optical fibers allow for very long propagation distances z L=  ranging from meters to 
kilometers, and this allows the nonlinear phase-shifts to accumulate since the nonlinear 
phase-shift is proportional to the fiber length in Equation. 4.8. 

 
Self-phase modulation is the dominant nonlinear effect in optical fibers and we shall be 
exploring its effect in the coming sections.  In this module we shall explore SPM on its own, and 
in module 5 we shall explore the combined effects of GVD and SPM. 
 
For additional reading on the material covered in this section see Sec. 1.1 of Ref. [1], and Sec. 
1.3 of and Appendix B of Ref. [2].  

 
4.2 Slowly varying envelope equation. 
 
To obtain a slowly varying equation in the presence of SPM we start from the solution in 
Equation. 4.7 for the field propagating in the nonlinear medium which we write in the form 
 
 



 
 

5 The authors would like to acknowledge support from the National Science Foundation through CIAN NSF 
ERC under grant #EEC-0812072 

 

 
0 0

0
0 0 2

0
0 2

( ) exp ( )

exp ( ) ,i z i z

E z E i n n I z
c

e E i n Iz e A z
c

β β

ω

ω

 = + 
 
 = = 
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(Equation 4.9) 
 
and from this we identify the slowly varying temporal field envelope 
 

 0
0 2( ) exp .A z E i n Iz

c
ω =  

 
   

(Equation 4.10) 
 
Since we are considering a lossless dielectric medium the field power 2| |A  and hence the 
intensity will remain constant under propagation.  Then we may obtain a propagation equation 
for the field envelope ( )A z  simply by differentiating Equation. 4.10 to obtain 
 

 0
2 ,A i n IA

z c
ω∂

=
∂

   

(Equation 4.11) 
 
and this is the basic slowly varying envelope equation describing propagation in a nonlinear 
medium exhibiting SPM.  We still need to relate the intensity I  to the field envelope A  to 
complete the description.  Recall from module 2 that we assume that the field envelope in a fiber 
geometry is scaled such that 2| |A  is a power in W , whereas we need the intensity I  in 2/W cm .  
Without going into details, the relation between these two is obtained using the effective core 
area effA  for the fiber so that 2| | / effI A A= , where the effective core are is given explicitly in 
terms of the fiber fundamental mode ( , )F x y  as 
 

 
( )2

2

4

| ( , ) |
.

| ( , ) |eff

F x y dxdy
A

F x y dxdy
= ∫∫
∫∫

  

 (Equation 4.12) 
 
Details of the effective core area can be found in Sec. 2.3.1 of Ref. [2].  The slowly varying 
envelope Equation. 4.11 then becomes 
 

 20
2 | ( ) | ( ) ,A i n IA i A z A z

z c
ω γ∂

= =
∂

    

(Equation 4.13) 
 
where the nonlinear parameter is 0 2 0/ effn cAγ ω ≥= . This is the form of the slowly varying 
envelope equation was shall use hereafter along with a prescribed value of the nonlinear 
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parameterγ  that incorporates the parameters and geometry of the optical fiber of interest.  Note 
that the nonlinear parameter has units of radians per unit power and length, and γ  is normally 
expressed in 1 /W km− .  Effective core areas are typically in the range 220 100 effA mµ= − .  Then 

for a wavelength of 1.5  mλ µ=  and 16 2
2 2.6 10   /n cm W−×  we find 1 10 γ − W-1/km which 

sets the typical scale for the nonlinear parameter. 
 
So far we have considered the slowly varying envelope equation for a CW or monochromatic 
field.  It is possible to generalize Equation. 4.13 to allow for pulses, and to generalize to include 
the group velocity, group-velocity dispersion (GVD), and linear absorption in addition to SPM.  
Without proof we state that the resulting slowly varying envelope equation for the temporal field 
envelope ( , )A z t  is 
 

 
2

22
1 2 | | ,

2 2
iA A A A i A A

z t t
β αβ γ∂ ∂ ∂

+ + = − +
∂ ∂ ∂

   

(Equation 4.14) 
 
which generalizes Equation. 2.21 of module 2.  Note that if we neglect the nonlinearity by 
setting the nonlinear parameter to zero ( 0)γ =  we regain our previous linear equation, whereas if 
we take the CW limit by setting the time derivatives to zero and neglect absorption ( 0)α =  then 
we recover Equation. 4.13 for SPM in the CW limit.   
 
For most of our analysis we shall consider Equation. 4.14 in the retarded frame with coordinates 
( , )z T , in terms of which Equation. 4.14 becomes for the temporal field envelope ( , )A z T  
 
  

 
2

22
2 | | .

2 2
iA A A i A A

z T
β α γ∂ ∂

+ = − +
∂ ∂

   

(Equation 4.15) 
 
This is the most general slowly varying envelope equation we shall consider.  We shall often use 
the dimensionless form of the temporal field envelope 0( , ) ( , )A z T P U z T=  introduce in module 
2, with 0P  the peak power in the input pulse. The equation for ( , )U z T  in the retarded frame can 
be written in the from 
 

2
22

2 | | ,
2 2 NL

iU U iU U U
z T L

β α∂ ∂
+ = − +

∂ ∂
   

(Equation 4.16) 
 
where the nonlinear length is given by 1

0( )NLL Pγ −= .  The nonlinear length is the characteristic 
length scale over which SPM manifests itself for a given fiber nonlinear parameter γ  and input 
pulse power 0P , and we note that NLL  is shorter for increasing input power and also increasing 
nonlinear parameter.  The nonlinear length is a very important nonlinear length scale that 
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characterizes pulse propagation in optical fibers in the presence of SPM.  For example, for a fiber 
of length L  if NLL L<<  then SPM will not be relevant in the fiber propagation, whereas if 

NLL L>  SPM will be important in the pulse propagation. 
 
We recall from module 2 that the relevant length scale for linear pulse propagation in the 
presence of GVD is the dispersion length 2

0 2/ ||DL T β=  for a pulse of duration 0T  and a fiber 
with GVD parameter 2β .  There is actually a third length scale 1/AL α=  which characterizes the 
length scale over which linear absorption occurs.  Let us quote the formulae for these lengths for 
future reference 
 

 
2

0

2 0

1 1, , .
| |D NL A
TL L L

Pβ γ α
= = =    

(Equation 4.17) 
 
The dispersion length and nonlinear length are key to understanding the trade of between GVD 
and SPM in fibers.  For example, if the dispersion length is much less than the nonlinear length, 

D NLL L<< , then dispersion occurs on a much shorter propagation length scale than SPM, and we 
may neglect SMP to a good approximation as the propagation will be dominated by GVD.  In 
contrast, in the opposite extreme if the nonlinear length is much less than the dispersion length, 

NL DL L<< , then SPM occurs on a much shorter propagation length scale than GVD, and we may 
neglect GVD to a good approximation as the propagation will be dominated by SPM.  On the 
other hand, if the dispersion and nonlinear lengths are comparable on must keep both GVD and 
SPM on the same footing, and this will be the case in module 5 where we consider temporal 
optical solitons. 
 
For the current module we consider the case that NL DL L<<  so that we may neglect GVD to a 
good approximation.  As an example consider the case with nonlinear parameter 110  /W kmγ −=  
and GVD parameter 2

2 25  /ps kmβ = − .   Then using Equation. 4.17 for a peak power 0 1 P W=  
we find 0.1NLL =  km, and for 0 10T =  ps we find 4DL =  km, so this is an example where GVD 
may be ignored in comparison to the dominant effects of SPM.  In contrast for 0 1T =  ps we find 

0.04DL =  km so that GVD would dominate the propagation.    
 
For the remainder of this module we assume that SPM dominates the optical fiber propagation so 
that we may explore the effects of SPM alone.  Then assuming that we may also neglect linear 
absorption over the fiber of length L, AL L<< , the slowly varying envelope Equation 4.15 
becomes 
 

 2( , ) | ( , ) | ( , ) .A z T i A z T A z T
z

γ∂
=

∂
   

(Equation 4.18) 
 
As a first attempt to solve this equation we may write Equation. 4.18 in the operator form 
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 ( , ) ˆ ( , ) ,A z T NA z T
z

∂
=

∂
    

(Equation 4.19) 
 
where the nonlinear operator is 2ˆ | |N i Aγ= , with solution 
 
 ˆ( , ) (0, ) .NzA z T e A T=    

(Equation 4.20) 
 
This is a formal solution but is not of utility for numerical evaluation.  In this formal solution the 
operator N̂ze  acts or operates on the initial pulse (0, )A T  to produce the pulse ( , )A z T  after a 
propagation distance z .  We shall utilize this formal solution in module 5. 
 
You should check that Equation. 4.18 actually has the exact solution 
 
 

2| (0, ) ( ,| )( , ) (0, (0, ) ,) NLi z Tzi A TA z T TA AT ee φγ= =    
(Equation 4.21) 

 
with input pulse envelope ( 0, )A z T=  at 0z = .  Note that according to Equation. 4.21 the 
propagated field acquires a nonlinear phase-shift due to SPM in the optical fiber 
 
 2( , ) | (0, ) | ,NL z zT A Tφ γ=    

(Equation 4.22) 
 
that varies over in time T over the pulse.  That is, each time slice in the pulse parameterized by 
the time coordinate T experiences a different nonlinear phase-shift which depends on the power 

2| (0, ) |A T  associated with that time slice.   In the next two sections we shall next explore the 
physical consequences of SPM for pulses based on Equation. 4.21 using numerical simulations.  
 
For additional reading on the material covered in this section see Sec. 2.3.1 and 3.1 of Ref. [2].  

 
4.3 Numerical simulation of SPM in fibers 
 
We now wish to assess the effects of SPM on pulse propagation using Equation. 4.21, and need 
to decide what physical quantity to look at.  One possibility is the pulse power profile 2| ( , ) |A z T , 
but by taking the magnitude squared of Equation. 4.21 we find 
 
 2 2| ( , ) | | (0, ) | ,A z T A T=    

(Equation 4.23) 
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that is, the pulse profile does not change with propagation distance z  along the fiber.  This is 
physically reasonable since we have neglected absorption and GVD, so there is no dispersion-
induced broadening of the pulse power profile. 
 
In the presence of SPM the appropriate quantity to investigate is the pulse spectrum 

2| ( , ) |A z Ω  from module 3, where the spectral field envelope is given as before by (see Eq. 
3.3 of module 3) 
 

 1( , ) ( , ) ,
2

i TA z dT A z T e
π

∞ Ω

−∞
Ω = ∫    

(Equation 4.24) 
 
and 0 )(ω ωΩ = −  is the frequency relative to the carrier frequency 0ω  of the pulse.  In particular, 
we consider an initial Gaussian pulse at 0z =  
 

 
2

2
02

0( ,0, )
T
TA T P e

−

=    
(Equation 4.25) 

 
with 0P  the peak input power and 0T  the input pulse width.  Then using Equation. 4.21 the field 
envelope after a propagation distance z is given by   
 
 ( )2 2 2 2

0 0/2 /
0 0( , ) exp .T T T TA z T P e i zP eγ− −=    

(Equation 4.26) 
 
The spectrum generally needs to be evaluated numerically and this can be done rapidly in 
Matlab.  The basic scheme is as follows 
 

1. Evaluate the temporal field envelope ( , )A z T  for a given propagation distance z over the 
length of the fiber using Equation. 4.26. 

2. Take the Fourier transform using Equation. 4.24 to obtain the corresponding spectral 
field envelope ( , )A z Ω . 

3. Calculate the pulse spectrum as 2| ( , ) |A z Ω . 
 
The brief Matlab code SPMpulseProp.m on the next page evaluates the pulse spectrum based on 
this scheme.  For this purpose one needs to set up time and frequency grids as for the linear 
propagation in module 2, the selection of the grids is the same with the time window maxT , 
number of grid points N , and so on.  The code starts with the input of the parameters 

0 0, , , , ,maxT N T P Lγ , the units of each being specified, and this is followed by setting up of the 
time and frequency grids.  Just below this we set up the initial Gaussian pulse on the discrete 
time grid (0) (0, )j jA A T≡ , the propagated pulse ( ) ( , )j jA z A z T≡  according to Equation. 4.26, 

and finally we take the Fourier transform to obtain the spectral filed amplitude ( ) ( , )m mA z A z≡ Ω   
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on the discrete frequency grid using the command Atilde=(dT/2/pi)*fftshift(fft(A)).  The final 
stage is to plot the spectrum obtained as 2| ( ) |mA z  for the input and propagated field. 
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function SPMpulseProp; 
close all 
% 
%       Input parameters 
% 
Tmax = 20.00;         % temporal grid size in ps 
N = 0512;             % number of time grid points 
T0 = 1.0;             % pulse duration in ps 
P0 = 4.0;             % peak input power in W 
gamma = 2.0;          % nonlinear parameter in W^{-1}/km 
L = 4.00;             % fiber length in km 
% 
%      Set up time and frequency grids 
% 
v = linspace(0,N-1,N); 
dT = Tmax/N; 
T = -Tmax/2 + v*dT;            % Time grid 
dOmega = 2*pi/Tmax; 
Omega = -pi/dT + v*dOmega;     % Frequency grid 
% 
A = exp(-0.5*(T/T0).^2);              % Gaussian input pulse 
A0 = A;                               % copy of the input pulse 
% 
Atilde0 = (dT/2/pi)*fftshift(fft(A));          % FT of the input pulse 
A = A0.*exp(1i*gamma*P0*abs(A0).^2*L);  % nonlinear propagation 
Atilde = (dT/2/pi)*fftshift(fft(A));           % FT of propagated pulse 
% 
%  Plot the spectrum of the initial and final pulses 
% 
figure 
plot(Omega,abs(Atilde).^2,Omega,abs(Atilde0).^2,'--'); 
set(gca,'FontSize',15); 
xlabel('\Omega (rad/ps)'); 
ylabel('Pulse spectrum'); 
xlim([-40,40]); 
title(' '); 
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An example of such a calculation for propagation of the spectrum in shown in Figure. 4.1 which 
displays the spectrum of the initial pulse (dashed line) and that for the propagated pulse (solid 
line) for parameters 1

0 4  , 2  / , 4  P W W km L kmγ −= = = . ( In viewing these results is it useful to 
recall that Ω  is the frequency with respect to the pulse carrier frequency 0ω .)   In each case the 

spectrum 2| ( , ) |A z Ω  is plotted as a function of Ω  in rad/ps. 
 

 
 

Figure. 4.1 Spectrum of the initial pulse (dashed line) and that for the propagated pulse (solid line) for 
parameters 1

0 4  , 2  / , 4  P W W km L kmγ −= = = . 
 
The remarkable feature is that the output pulse spectrum is massively broadened with respect to 
the input spectrum, and has developed a large amount of oscillatory structure.  (The area under 
both of these curves is the same as this area corresponds to the pulse energy.)  In particular, the 
energy present in the incident pulse has been redistributed by SPM over a much braoder range of 
frequencies.  This effect is called SPM-induced spectral broadening, and it can cause massive 
reshaping and broadening of the input pulse spectrum.  This effect is of utility in supercontinuum 
or white light generation in which the goal is the create a spectrum that can cover the whole 
optical range.  In the next section we shall explore SPM-broadening in more detail and then offer 
a physical picture for the process. 
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4.4 SPM-induced spectral broadening 
 
Next we want to explore how the spectrum evolves from the initial spectrum (dash line) in 
Figure. 4.1 to the final (solid line) under the action of SPM-induced spectral broadening.  To do 
this we need to solve for the pulse spectrum for intermediate values of the propagation distance 

0 4z = −  km and plot the pulse spectrum.  The code SPMpulseVisual.m on the next page 
performs this task, and Figure. 4.2 shows a color coded plot of the pulse spectrum 2| ( , ) |A z Ω  
with propagation distance z along the horizontal axis and frequency Ω  along the vertical axis, 
the color code for the magnitude squared of the spectrum being shown on the right. 
 

 
 

Figure. 4.2  Pulse spectrum 2| ( , ) |A z Ω  versus propagation distance z along the horizontal axis and 
frequency Ω  along the vertical axis. 

 
Figure 4.2 shows some very interesting features.  First, the frequency width of the spectrum 
expands nearly linearly with increasing propagation distance z.  That is, the spectrum extends 
from [ 15,15]  /rad sΩ ≈ −  for z=2 km, whereas it extends from [ 30,30]   /rad sΩ ≈ −  for z=4 
km.  Second, the number of oscillations in the spectrum increases with propagation distance z. 
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function SPMpulseVisual; 
close all 
% 
%       Input parameters 
% 
Tmax = 20.00;         % temporal grid size in ps 
N = 0512;             % number of time grid points 
T0 = 1.0;             % pulse duration in ps 
P0 = 4.0;             % peak input power in W 
gamma = 2.0;          % nonlinear parameter in W^{-1}/km 
L = 4.00;             % fiber length in km 
Nz = 400;             % number of points along z 
% 
%      Set up time and frequency grids 
% 
v = linspace(0,N-1,N); 
dT = Tmax/N; 
T = -Tmax/2 + v*dT;           % Time grid 
dOmega = 2*pi/Tmax; 
Omega = -pi/dT + v*dOmega;    % Frequency grid 
% 
A = exp(-0.5*(T/T0).^2);            % Gaussian input pulse 
A0 = A;                             % copy of the input pulse 
% 
zval = linspace(0,L,Nz); 
zv = linspace(0,L,Nz+1); 
dz = L/Nz; 
Atilde = dT*fftshift(fft(A));       % FT of the input pulse 
Atilde0 = Atilde;    
Spec(:,1) = abs(Atilde).^2;         % Spectrum of the input pulse 
% 
for iz = 2:Nz+1 
    A = A0.*exp(1i*gamma*P0*abs(A0).^2*dz*(iz-1)); % nonlinear propagation 
    Atilde = dT*fftshift(fft(A));                  % FT of pulse 
    Spec(:,iz) = abs(Atilde).^2;                   % Pulse spectrum 
end 
% 
%  Plot the output pulse 
% 
figure 
imagesc(zval,Omega,Spec) 
colorbar 
set(gca,'FontSize',15); 
xlabel('z (km)'); 
ylabel('\Omega (rad/ps)'); 
title('Pulse spectrum'); 
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To probe deeper we now examine the general features of this result as opposed to the specifics. 
That the SPM-induced spectral broadening is proportional to the propagation distance z is 
perhaps not surprising since it is based the nonlinear phase-shift appearing in the exponential in 
Equation. 4.26 which varies linearly with z.  We further note that the nonlinear phase shift is 
also proportional to the peak input power 0P  and the nonlinear coefficient γ , and this suggests 
that we should more generally look at the SPM-induced spectral broadening as a function of the 
maximum nonlinear phase-shift 0max P zφ γ= .  In addition, Figure. 4.2 was obtained for a given 
input pulse width 0T  which in turn determines the scale of the frequency axis.  In general it 
makes sense to use the quantity 0TΩ  as a dimensionless measure of the pulse frequency.  Figure 
4.3 is the same as 4.2 but now the horizontal axis is the maximum nonlinear phase-shift 

0max P zφ γ= , and the vertical axis is the scaled frequency 0TΩ . 
 

 
 

Figure. 4.3  Pulse spectrum versus maximum nonlinear phase-shift maxφ  along the horizontal axis 
and scaled frequency TΩ  along the vertical axis. 

 
It turns out that the form of Figure. 4.3 is the same independent of the specific parameters for a 
Gaussian pulse.  Then, for example, we see that that spectrum extends from 0 [ 30,30]maxTΩ ≈ −  
for 30maxφ ≈ , from which we obtain the approximate relation for the spectral extent maxδω  due to 
SPM-induced spectral broadening 
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 max 0 max· ,max Cδ ωω φ= Ω = ∆    
(Equation 4.27) 

  
where C  is a constant , and 0 01/ Tω∆ =  is a measure of the spectral bandwidth of the input pulse 
of duration 0T .   The constant C is of the order of unity and its value varies depending on the 
particular pulse shape employed, for example, Gaussian or hyperbolic secant. 
 
Equation.4.27 is a very interesting result.  It says that for an incident pulse of duration 0T  and 
bandwidth 0 01/ Tω∆ = , and a peak nonlinear phase shift 0max P zφ γ= , the spectrum of the output 
pulse will span the range 0 0, ][ max maxω ω δω ω δω= − + .  In addition the output pulse spectrum is 
broadened by a factor 
 

 
0

· ,max
maxCδω φ

ω
=

∆
   

(Equation 4.28) 
 
and this broadening can be very large if the maximum nonlinear phase-shift 0max P zφ γ=  is made 
large.  For example, for the case shown in Figure. 4.1 0T =  1 ps and 0 1δω =  rad/ps, and 

32maxφ = .  According to Equation. 4.27 with 1C =  the spectrum should span the range 
[ 32,32]Ω = −  rad/ps, which agrees well with Figure. 4.1.  This corresponds to a broadening of 

the input spectrum by a factor of 32. 
 
We have here used numerical simulation as an aid to explore how SPM-induced spectral 
broadening evolves under propagation along an optical fiber.  To finish this section Figure. 4.4 
shows an animation of how the spectrum evolves for the example in Figure. 4.1. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure. 4.4  This movie shows an animation of how the pulse spectrum evolves for the example parameters 
in Figure. 4.1 
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The animation is intended to highlight the remarkable spectral reshaping that occurs in fibers due 
to SPM.  SPM-induced spectral broadening is a spectacular example of nonlinear optics in action 
in optical fibers, and is a key ingredient of supercontinuum or white light generation in fibers.  
There have been many studies of SPM in fibers, but the first one by Stolen and Lin in Ref. [3] is 
a classic paper and highly recommended reading for the interested student.    
 
For additional reading on the material covered in this section see Sec. 4.1 of Ref. [2] and Ref. 
[3].  

 
4.5 Nonlinear chirping model for spectral broadening 
 
We next turn to a physical model that is of great utility in understanding SPM-induced spectral 
broadening, in particular the origin of Equation. 4.27.  The total phase-shift suffered by a 
Gaussian pulse propagating in the optical fiber is ( )L NLφ φ φ= + , where 0L zφ β=  is the linear 
phase-shift. From Equation. 4.26 the nonlinear phase-shift for a Gaussian pulse is 
 
 

2 2 2 2
0 0

max
/ /

0( ) ,T T T T
NL T P ze eφ γ φ− −= =    

(Equation 4.29) 
 
with 0max P zφ γ=  the maximum nonlinear phase-shift.  Here we employ the notion of the 
instantaneous frequency shift ( ) /T Tδω φ= −∂ ∂  from module 2, see Equation. 2.34, to assess 
the frequency content of the propagating pulse.  Using the phase-shift above yields 

( ) / /NLT T Tδω φ φ= −∂ ∂ = −∂ ∂ , and for our Gaussian pulse 
 

 
2 2

0/
max 2

0

( ) 2 .T TTT e
T

δω φ − 
=  

 
   

(Equation 4.30) 
 
Since 0maxφ >  for optical fibers this formula reveals that the instantaneous frequencies 

( ) 0Tδω >  are up-shifted with respect to carrier frequency 0ω  for the trailing edge of the pulse T 
> 0, whereas the instantaneous frequencies ( ) 0Tδω <  are down-shifted for the leading  edge of 
the pulse T < 0.   An example of the variation of the instantaneous frequency shift ( )Tδω  versus 
T  is shown as the solid line in Figure. 4.5 for max 32φ =  and T0=1 ps, the Gaussian intensity 
profile of the pulse being shown as the dashed line. Note that around the most powerful center of 
the pulse at T=0 there is an almost linear variation of ( )Tδω  with T, and this is analogous the 
effect of frequency chirping introduce in module 2.  Here, however, even for an initial pulse with 
no chirp the action of nonlinear SPM the propagating pulse acquires a chirp that increases with 
the value of maxφ , and the SPM-induced spectral broadening can be viewed physically as arising 
from the growth of this nonlinear frequency chirping under propagation. 
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Figure. 4.5 Instantaneous frequency of a Gaussian pulse undergoing SPM-induced spectral broadening.  
The Gaussian profile of the pulse is shown as the dash line. 

 
From Figure. 4.5 we see that the instantaneous frequency shift attains a maximum value maxδω  

for T>0.  Using Equation. 4.30 the we readily find that maximum value occurs for 0 / 2T T=  
from which we obtain the relation 
 
 00.86 ,max maxδω ω φ= ∆    

(Equation 4.31) 
 
which is precisely of the form of Equation. 4.27 with C=0.86.  The notion of instantaneous 
frequency shift and nonlinear frequency chirping therefore provides a physically powerful way to 
understand the magnitude of the SPM-induced spectral broadening that occurs in optical fibers.   
 
For additional reading on the material covered in this section see Sec. 4.1 of Ref. [2].  

 
4.6 Intuitive model for temporal optical solitons in fibers 
 
In our discussion so far we have separated linear and nonlinear effects.  In the context of linear 
optics we discussed dispersion-induced pulse broadening due to GVD, and in the context of 
nonlinear optics we have discussed SPM-induced spectral broadening.  It is now time to consider 
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the combination of GVD and SPM in fibers.  One way to say this is that now we need to explore 
when the dispersion length and nonlinear length become comparable, D NLL L .  To gain a 
qualitative physical picture of what can occur in this regime we start from Figure. 4.5 as an 
illustration of what happens to the instantaneous frequency ( )Tδω  as a function of T due to SPM 
occurring in the fiber, the net effect being that the trailing edge of the pulse is up-shifted in 
frequency and the leading edge down-shifted.  We next need to consider what physical effect 
GVD has when combined with SPM, and for concreteness let us consider anomalous dispersion 
for which the velocity of light tends to increase with increasing frequency. In this case the up-
shifted frequencies in the trailing edge of the pulse will travel faster than the down-shifted 
frequencies in the leading edge, and this can lead to nonlinear pulse compression in which the 
trailing edge of the pulse starts to catch up with the leading edge.  This combination of optical 
fiber based SPM and anomalous GVD is at the heart of many nonlinear pulse compression 
schemes.  The question then arises whether it is possible to balance the effects of GVD and SPM 
in such a way that an incident pulse has unity compression, and will therefore propagate with 
unchanging pulse profile along the fiber?  The answer is yes and it corresponds to the temporal 
optical soliton solution for optical fibers that we discuss next.   
 
Some contemporary engineering problems that require a knowledge of the material taught in this 
module are 
 

• Modeling the effect of nonlinearity in integrated optic devices. 
• Modeling of nonlinear spectral distortion in optical fiber links. 
• The design of supercontinuum light sources. 
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